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Abstract

This paper analyzes the stability of linear systems with quantized feedback in the presence of a mismatch between the initial
conditions at the coder and decoder. Under the assumption of the prefect channel, we show that using the scheme proposed in
[Liberzon, Nešić (2007)] it is possible to achieve global exponential stability of linear systems with quantized feedback when
the coder and decoder are initialized at different initial conditions.
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1 Introduction

The subject of this paper is the analysis of robustness of
linear systems with quantized feedback with respect to
a mismatch between the initial conditions at the coder
and decoder. Control systems with quantized feedback
are increasingly used in control practice due to advances
in computer, sensor and actuator technologies, as well
as our desire to decrease costs, simplify installation and
maintenance. While a number of important results have
been published on the topic of the quantized control sys-
tems, including [1], [3], [6], [7], [10], [8], to our best knowl-
edge, none of them consider the issue of the mismatch
between the initial conditions at the coder and decoder.

To simplify the presentation, we assume that the chan-
nel is perfect and concentrate on the robustness prop-
erties of the systems when the coder and decoder are
initialized at different initial conditions. While the is-
sues of the robustness with respect to the time-delays,
data dropouts, bit-errors, corrupted signals and control,
in general, over noisy channels were investigated [2], [9],
[14], the robustness with respect to the computational
errors at the coder and decoder did not receive much
attention in the literature.

The device which at each instant of time maps the value
of the plant output measurements into one of all possi-
ble symbols is called the coder (pre-processing device).
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The symbol generated by the coder is then transmitted
through the channel to the receiver. At the reception, the
decoder (after-processing device) generates an estimated
value of the state from the received symbol. Note, that
to deal with a finite capacity of the channel, we have to
run two copies of the system on both sides of the digital
channel. A common assumption made in the literature is
that these two systems are initialized at the same initial
condition and, hence, the issue of the discrepancy in the
initialization at the coder and decoder is ignored. This
may not be implementable in practice due to hardware
imperfections. Even if the coder and decoder are initial-
ized at the same value and the channel is perfect, since
the coder and decoder dynamics evolve independently,
the computational errors in the algorithm implemented
at the coder and decoder can occur. At this point of time
the mismatch in the coder and decoder takes place.

In other words, even if the channel is perfect and the in-
ternal coder/decoder factors are initialized at the same
value, due to a finite precision of encoding and decoding
schemes for transmitted information there might exist
time such that these internal factors start to differ. We
treat this time instant as the initial time when the mis-
match occurs.

In this paper we investigate this phenomenon further.
We explore the following question: does the system pre-
serve stability properties when the coder and decoder
are initialized at different initial conditions?

We explore the robustness with respect to the mismatch
between the initial conditions at the coder and decoder
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of the discrete linear time-invariant systems with quan-
tized feedback. As a particular example of the quantizer-
coder-decoder scheme, we analyze in detail the sampled-
data hysteresis switching scheme proposed in [8]. We use
this scheme as a representative example of other quan-
tized control schemes, that have adaptive quantization
as their main feature, that is: the quantizer’s range and
quantization error are changing adaptively depending on
the quantized measurements of the plant.

Note, that in [8] the modified version of the hystere-
sis scheme, that we use in this paper was also intro-
duced. That scheme was developed to handle distur-
bances, while here we consider systems with no distur-
bances. This scheme is known to lead to the various
stability properties of the linear time-invariant systems
when the coder and decoder are initialized at the same
initial conditions [5], [8]. In the simulations we have ob-
served, that when the mismatch between the coder and
decoder initialization is sufficiently large, the system dy-
namics become unstable.

Under the assumption that the channel is perfect, using
Liberzon and Nešić scheme, we analyze the robustness
properties of the quantized control system with respect
to the computational errors that occur due to the in-
dependent evaluation of the adaptive “scaling” factors
at the coder and decoder. We give a quantitative mea-
sure on how much these adaptive “scaling” factors at
the coder and decoder can differ so that the system pre-
serves stability.

We show that if the channel is perfect and the coder and
decoder are initialized at different initial conditions (but
a bound on the mismatch holds), then using the time-
sampled scheme introduced in [8], it is possible to adjust
the parameters of the quantizer so that the systems is
global exponential stable (GES) (refer to Definition 3 in
Section 4). Our Theorem 1 in Section 4 shows that GES
(in the sense of Definition 3) is possible when the channel
is perfect, the parameters of the scheme are adjusted
appropriately and the bound on the mismatch between
the initial conditions at the coder and decoder holds. In
other words, we show that the scheme has some intrinsic
robustness properties with respect to small mismatches
in the coder/decoder initialization. We believe that these
results shed a light on the robustness properties of other
quantized control scheme in the literature.

The remainder of the paper is organized as follows. In
Section 2 we give definitions that are used in the sequel.
The closed loop system, switching rules and protocol are
given in Section 3. The main results are presented in
Section 4. Section 5 offers the conclusions. The proofs
are given in the appendix.

2 Notation and preliminaries

In this section we introduce some notation and give the
definitions that will make the discussed concepts precise.
In what follows, |·| denotes the Euclidean norm, ‖·‖
denotes the corresponding matrix induced norm. The
infinity-norm of a sequence of vectors on a time-interval
[k1, k2] is denoted ‖z‖[k1,k2] := supk∈[k1,k2] |zk|.

A quantizer is a piecewise constant function q : Rn → Q,
where Q is a finite subset of Rn. We use the following
assumption:

Assumption 1 There exist strictly positive numbers
M1 ≥ M > ∆ > 0, ∆0 such that the following holds:
1. If |z| ≤ M then |q(z) − z| ≤ ∆; 2. If |z| > M then
|q(z)| > M − ∆; 3. For all |z| ≤ ∆0 we have that
q(z) = 0; 4. |q(z)| ≤ M1 for all z ∈ Rn.

M is called the range of the quantizer; ∆ is called the
quantization error. The first condition gives a bound on
the quantization error when the state is in the range of
the quantizer, the second gives the possibility to detect
saturation. The third condition is needed to preserve the
origin as an equilibrium and, moreover, together with
the forth condition it guarantees that there exists Lq > 0
such that |q(z)| < Lq|z| ∀z ∈ Rn. The last conditions
guarantees that the quantized values of z are globally
bounded. Note, that for a sufficiently large M1 without
loss of generality we can assume that the following holds:
M1 = LqM . We will use the following definitions:

Definition 1 A function γ : R≥0 → R≥0 is of class K∞
if it is continuous, zero at zero, strictly increasing and
unbounded.

Definition 2 A function β : [0,∞) × [0,∞) → [0,∞)
is said to be class K ÃL if β(·, t) is continuous, strictly
increasing and zero at zero for each fixed t ≥ 0 and β(r, t)
decreases to 0 as t →∞ for each fixed r ≥ 0.

3 Closed-loop system

Consider the continuous-time linear system with a con-
trol input:

ẋ(t) = Ax(t) + Bu(t), x(0) ∈ Rn (1)

where x ∈ Rn, u ∈ Rm are respectively the state and
control. The matrix A is nonzero and non-Hurwitz. De-
fine tk = kT for k = 0, 1, 2, . . . , where T > 0 is a
given sampling period. We assume that u(t) = cost.∀t ∈
[kT, (k + 1)T ]. We shortly denote x(tk) = xk, u(tk) =
uk, k = 0, 1, 2, . . . . The plant (1) induces the following
discrete-time system which is more amenable to analy-
sis:

xk+1 = Φxk + Γuk, x0 ∈ Rn, (2)
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Fig. 1. A feedback system with a digital channel.

where Φ = eAT , Γ =
∫ T

0
eAsB ds. Note, that due to a

finite capacity of the channel the state measurements are
quantized into a finite subset ofRn. We use the quantized
measurements in the following form:

qc
k := µc

kq

(
xk

µc
k

)
, µc

0 > 0

on the coder side of the channel (see Figure 1) and

qd
k := µd

k

(
q

(
xk

µc
k

)
+ vk

)
, µd

0 > 0

on the decoder side of the communication channel. µc
k,

µd
k are the adjustable parameters, called “zoom” vari-

ables, that are updated at discrete instants of time; µc
k

and µd
k correspond to the coder and decoder dynamics

respectively. The symbol q
(

xk

µc
k

)
is send via the commu-

nication channel. At the reception, the decoder receives
the symbol q

(
xk

µc
k

)
+ vk, which is, in general, not nec-

essarily identical to the symbol which was send by the
coder. The term vk corresponds to a general noise in the
channel, it can model the pure (propagation) time-delay,
packets loss, bit-errors etc. To simplify the presentation,
we do not combine the issues of the noisy channel with
the issue of the robustness with respect to the mismatch
in the coder/decoder initialization. This problem is out-
side the scope of this paper.

Assumption 2 Assume that

vk ≡ 0 ∀k ≥ 0.

Assumption 2 guarantees that the channel is perfect: the
data that the coder sends, the decoder receives without
delay and without errors. The scheme of the discrete
closed-loop system (2) is given in Figure 1.

To control the system (2) we use the quantized hybrid
feedback that was introduced in [8]. We assume that
(Φ,Γ) is stabilizable and let K be such that Φ + ΓK

is Schur. Then the feedback is defined by the following
equations:

uk :=

{
0 if Ωd

k = Ωout

Kqd
k if Ωd

k = Ωin,
(3)

where the variable Ωd
k determines the switching rules for

the decoder. It can take only two strictly positive values
Ωout and Ωin, that will be defined next. If Ωd

k = Ωout

we say that a zoom-out condition is triggered at the de-
coder at time k. If Ωd

k = Ωin we say that a zoom-in con-
dition is triggered at the decoder at time k. During the
zoom-out stage of the decoder the system is running in
an open loop: uk = 0. During the zoom-in stage of the
decoder the certainty equivalence feedback uk = Kqd

k is
applied. The variable Ωc

k determines the switching rules
for the coder in the same manner as the variable Ωd

k de-
termines the switching rules for the decoder. The proto-
col dynamics is described by the following:

µc
k+1 :=

{
Ωoutµ

c
k if Ωc

k = Ωout

Ωinµc
k if Ωc

k = Ωin

µc
0 ∈ R>0. (4)

µd
k+1 :=

{
Ωoutµ

d
k if Ωd

k = Ωout

Ωinµd
k if Ωd

k = Ωin

µd
0 ∈ R>0. (5)

The adjustment policy for µc
k, µd

k can be thought of as
implemented on both ends of the communication chan-
nel (at the coder and decoder) from some known initial
values µc

0, µd
0.

Note, that in [8] it is assumed, that the coder and decoder
are initialized at the same initial condition µc

0 = µd
0,

therefore µc
k = µd

k for all k = 0, 1, 2, . . . . We, on the other
hand, assume that there may be a mismatch between the
initial conditions at the coder and decoder and in our
case, generally, µc

k 6= µd
k. In particular, we assume that

the ratio (the mismatch) of the initial conditions at the
coder and at the decoder is r > 0 (and not necessarily
r = 1, as assumed in [8]):

r :=
µc

0

µd
0

, µc
0 > 0, µd

0 > 0.

The adjustment policies for µc
k and µd

k are composed

of two stages: a zoom-out stage and a zoom-in stage.
During the zoom-out stage of the coder (respectively the
decoder) the value of an adjustable parameter µc (re-
spectively µd) is increased at the rate faster than the
growth of |xk| until the state can be adequately mea-
sured. During the zoom-in stage of the coder (respec-
tively the decoder) the value of an adjustable parameter
µc (respectively µd) is decreased in such way as to drive
the state to the origin. The hysteresis switching is used
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to switch between the zoom-in and zoom-out stages. It
is described by the following:

Ωc
k :=





Ωout if |qc
k| > loutµ

c
k

Ωin if |qc
k| < linµc

k

Ωc
k−1 if |qc

k| ∈ [linµc
k, loutµ

c
k]

Ωc
0 = Ωout. (6)

Ωd
k :=





Ωout if |qd
k| > loutµ

d
k

Ωin if |qd
k| < linµd

k

Ωd
k−1 if |qd

k| ∈ [linµd
k, loutµ

d
k]

Ωd
0 = Ωout. (7)

where lout and lin are strictly positive numbers such that
lout := M −∆, lin := ∆M −∆ and ∆M > ∆, ∆M will
be defined later. Similarly to [8], we assume that the
coder and decoder are initialized at the same synchro-
nized stage:

Assumption 3 Assume that

Ωc
0 = Ωd

0 = Ωout.

Remark 1 Note, that the evaluation of Ωc
k and

Ωd
k do not require integration of any equation. The

coder/decoder evaluators for Ωc
k/Ωd

k use the dynamic
“look-up tables” (6)/(7) to set up the values of Ωc

k/Ωd
k

based on the values of q
(

xk

µc
k

)
and q

(
xk

µc
k

)
+ vk respec-

tively. Note, that due to Assumption 2, the values of
both, Ωc

k and Ωd
k, depend on the same symbol q

(
xk

µc
k

)
.

Therefore, if Ωc
k and Ωd

k initial stage is synchronized,
then their synchronization is enforced at every time step.

We assume that the coder and decoder evaluators for
Ωc

k and Ωd
k are reliable, that there are no mistakes in the

dynamic “look-up tables” for Ωc
k/Ωd

k at the coder and
decoder.

Assumption 4 Assume that

if for some k ≥ 0 vk = 0 and Ωc
k = Ωd

k,

then Ωc
k+1 = Ωd

k+1.

Note, that if Assumptions 2 and 4 hold, the coder and de-
coder switching will be synchronized. Cancelling µc

k, µd
k

in (6) and (7) we can conclude, that if the channel is per-
fect (Assumption 2 holds) and the coder/decoder evalu-
ators for Ωc

k/Ωd
k are reliable (Assumption 4 holds), then

the switching depends only on the value of q
(

xk

µc
k

)
. This

can be interpreted as the fact that the switching is gov-
erned by the variable ξc

k := xk

µc
k

(see Remark below).
Therefore, the coder and decoder switching conditions
are the same. That is, the coder and decoder switching
will be synchronized: if the coder is zooming-in, then the
decoder is zooming-in; and vice versa.

Remark 2 Consider the switching conditions for
the coder. Note, that whenever

∣∣∣ xk

µc
k

∣∣∣ < lin − ∆

holds,
∣∣∣µc

kq
(

xk

µc
k

)∣∣∣ < linµc
k holds. Also, the zoom-out

switching condition
∣∣∣µc

kq
(

xk

µc
k

)∣∣∣ > loutµ
c
k implies that∣∣∣ xk

µc
k

∣∣∣ > lout + ∆. The same observation holds for the
decoder.

Due to Assumption 2, in the sequel we treat the decoder
quantized measurements as qd

k = µd
kq

(
xk

µc
k

)
.

Next we present a straightforward result (Proposition 1
below), that guarantees that if (i) the channel is perfect
(Assumption 2 holds); (ii) the coder and decoder are
initialized at the same synchronized stage (Assumption
3 holds); (iii) the coder/decoder evaluators for Ωc

k/Ωd
k

are reliable (Assumption 4 holds); then the coder and
decoder stage will be always synchronized.

Proposition 1 Suppose Assumption 2 - 4 hold. Then

Ωc
k = Ωd

k ∀k ≥ 0.

The proof of Proposition 1 is by induction and not pre-
sented here.

Remark 3 Note, that the difference of Proposition 1
from Assumption 4 is that Assumption 4 guarantees the
synchronized stage of coder and decoder only for one step
ahead. Proposition 1, on the other hand, guarantees that
if the coder and decoder stage is synchronized at some
point of time, it will be synchronized for all future time.
In other words, if Ωc

0 and Ωd
0 are synchronized at the first

step, then the synchronization of Ωc
k and Ωd

k is enforced
at each time step.

Remark 4 It is possible to show that bounds valid
at sampling instants, can be extended for all time
t ∈ [tk, tk+1]. We will analyze only the stability proper-
ties of the discrete-time system (2) with (3) - (7) induced
by the sampled-data system (1). It was shown in [12] how
to use the underlying discrete-time model to conclude ap-
propriate stability properties of the sampled-data system.

We introduce some notation. Due to Assumptions 2 - 3
the coder and decoder switching will be synchronized.
We have that Ωc

k = Ωd
k for all k ≥ 0. We introduce kj ∈ N

such that

Ωc
k = Ωd

k = Ωout if k ∈ [k2i, k2i+1 − 1], i = 0, 1, 2, . . . , N

Ωc
k = Ωd

k = Ωin if k ∈ [k2i+1, k2i+2 − 1],

That is: k2i+1 is the time instant at which the coder and
decoder switch from the zoom-out stage to the zoom-in
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stage; k2i+2 is the time instant at which the coder and
decoder switch from the zoom-in stage to the zoom-out
stage. We assume that k0 = 0 and that the first inter-
val is always the zoom-out. We will adjust the quan-
tizer, coder, decoder and controller so that N = 0. In
other words, the coder and decoder will zoom-out for
k ∈ [0, k1 − 1] and zoom-in for all k ≥ k1.

To understand the operation of the plant (2) we need to
consider two modes of the operation of the plant: Mode
1. The coder and decoder are zooming-out; Mode 2.
The coder and decoder are zooming-in. The plant dy-
namics during each mode is considered in full details in
Lemmas 1 and 2 in Section 4. Lemmas 1 and 2 show that
if the quantizer, coder, decoder and controller are appro-
priately adjusted, then the following holds: i Mode 1 can
happen only on the first zooming interval, after which
the system switches to Mode 2; ii If Mode 2 happens
then system stays in Mode 2 for all future time. The dy-
namics of the plant during Modes 1 and 2 is described
below.

Mode 1: k ∈ [0, k1 − 1]. The coder and decoder are
zooming-out. During this mode the system dynamics is
described by the following equations:

xk+1 = Φxk, x0 ∈ Rn, (8)

µc
k+1 = Ωoutµ

c
k, µc

0 > 0,

µd
k+1 = Ωoutµ

d
k, µd

0 > 0.

The dynamics of ξc
k is described by the following equa-

tion:
ξc
k+1 =

1
Ωout

Φξc
k. (9)

Note that during this mode the ratio µc
k

µd
k

= Ωk
outµ

c
0

Ωk
outµ

d
0

=
µc

0
µd

0
= r stays constant for all k ∈ [0, k1]. Our Lemma 1

show that k1 ≤
⌊

1
ln(Ωout/‖Φ‖) ln

(
|ξc

0|
lin−∆

)⌋
.

Mode 2: k ≥ k1. The coder and decoder are zooming-
in. During this mode the system dynamics is described
by the following equations:

xk+1 = Φxk + ΓKµd
kq

(
xk

µc
k

)
, (10)

µc
k+1 = Ωinµc

k,

µd
k+1 = Ωinµd

k.

The dynamics of ξc
k is described by the following equa-

tion:

ξc
k+1 =

1
Ωin

Φξc
k +

1
Ωin

ΓK
µd

k

µc
k

q(ξc
k). (11)

Note that during this mode the ratio µc
k

µd
k

=
Ω

k−k1
in

µc
k1

Ω
k−k1
in

µd
k1

=

µc
k1

µd
k1

= µc
0

µd
0

= r stays constant for all k ≥ k1.

Adding and subtracting 1
Ωin

ΓKξc
k, 1

Ωin
ΓKq(ξc

k) terms to
the equation (11), we can say, that during Mode 2 the
system dynamics for ξc

k satisfies the following:

ξc
k+1 =

1
Ωin

(Φ + ΓK)ξc
k +

1
Ωin

ΓKν̄k, (12)

where ν̄k = νc
k + ( 1

r − 1)q(ξc
k) and νc

k = q(ξc
k)− ξc

k.

Note that |q(ξc
k)| ≤ M1 = LqM by the forth condi-

tion of Assumption 1. Also during the zoom-in stage
|ξc

k| ≤ lout + ∆ = M , and by the second condition of
Assumption 1 we have that |q(ξc

k)− ξc
k| ≤ ∆. Therefore,

we have that during the zoom-in stage |ν̄k| is bounded:

|ν̄k| ≤ |q(ξc
k)− ξc

k|+
∣∣∣∣
1
r
− 1

∣∣∣∣ |q(ξc
k)| ≤ ∆ +

∣∣∣∣
1
r
− 1

∣∣∣∣ LqM.

(13)
Also, when the initial conditions at the coder and at the
decoder are the same (µc

0 = µd
0), the ξc

k dynamics satisfies
(12) with ν̄k = νc

k (since r = µc
0/µd

0 = 1 in this case).

Now we can state the following results, that are similar
to Lemma III.2 and Corollary III.3 from [8]. The first
result follows directly from [4], Example 3.4.

Corollary 1 Suppose that Φ+ΓK is Schur. Then, there
exists an Ω∗in ∈ (0, 1) such that for all Ωin ∈ [Ω∗in, 1),

1
Ωin

(Φ+ΓK) is Schur. Moreover, for any such Ωin, there
exist strictly positive K1, λ, γ such that the solutions of
the system (12) satisfy the following ∀k ∈ [k2i+1, k2i+2]:

|ξc
k| ≤ K1 exp(−λ(k − k2i+1))|ξc

k2i+1
|+ γ‖ν̄‖. (14)

In particular, let κ > 0 and σ ∈ (0, 1) be such that 1

‖ 1
Ωk

in

(Φ + ΓK)k‖ ≤ κσk for all k ≥ 0. Then, we can let

K1 = κ, λ = − ln(σ), γ =
κ‖ΓK‖

Ωin(1− σ)
. (15)

Note, that if all conditions of Corollary 1 hold, then (12)
is a sum of a stable first term (since 1

Ωin
(Φ + ΓK) is

Schur) and a bounded second term (due to (13) during
the zoom-in stage).

Corollary 2 Suppose

∣∣∣∣
µd

0 − µc
0

µc
0

∣∣∣∣ <
1

γLq
. (16)

1 These numbers always exist since 1
Ωin

(Φ + ΓK) is Schur
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Let Ωin,K1, γ come from Corollary 1 and let strictly pos-
itive M and ∆ be such that the following holds:

M >
(2 + K1 + γ)∆
1− γ

∣∣1
r − 1

∣∣ Lq

. (17)

Then there exists a ∆M > 0 with ∆M −∆ > 0, such that
whenever |ξc

k2i+1
| ≤ ∆M and |νk| ≤ ∆ the following two

properties hold for all k ∈ [k2i+1, k2i+2]:

|ξc
k| ≤ M (18)

and
|q(ξc

k)| ≤ M −∆. (19)

Proof of Corollary 2. First we show the necessity of
the condition (16) for the proof. Suppose (17) holds. This
condition can be re-written as

(2 + K1 + γ)∆ < M

(
1− γ

∣∣∣∣
1
r
− 1

∣∣∣∣ Lq

)
. (20)

Since K1, γ, ∆,M are positive numbers, in order for (20)
to hold, the following condition has to hold:

1− γLq

∣∣∣∣
1
r
− 1

∣∣∣∣ > 0, (21)

which can be re-written as a condition (16).

Now we show that if all conditions of Corollary 2 hold,
then for all k ∈ [k2i+1, k2i+2] ξc

k and the quantized mea-
surements of the state are in the range of the quantizer.
Suppose all conditions of Corollary 2 hold. Then for all
k ∈ [k2i+1, k2i+2] the ξc

k dynamics satisfy the following:

|ξc
k| ≤ K1 exp(−λ(k − k2i+1))|ξc

k2i+1
|+ γ‖ν̄‖

≤ K1|lin −∆|+ γ(∆ +
∣∣∣∣
1
r
− 1

∣∣∣∣ LqM)

≤ K1∆M + γ∆ + γ

∣∣∣∣
1
r
− 1

∣∣∣∣ LqM (22)

≤ M.

The last inequality above comes from the following fact.
Since (20) is a strict inequality, there exist ∆M arbitrary
close to ∆ with ∆M > ∆, such that the following holds:

∆ + K1∆M + γ∆ < M −Mγ

∣∣∣∣
1
r
− 1

∣∣∣∣ Lq −∆.

Now we can write the following for all k ∈ [k2i+1, k2i+2]:

|q(ξc
k)| = |q(ξc

k)− ξc
k + ξc

k|

≤ ∆ + K1∆M + γ∆ + γ

∣∣∣∣
1
r
− 1

∣∣∣∣ LqM

≤ M −Mγ

∣∣∣∣
1
r
− 1

∣∣∣∣ Lq −∆ + γ

∣∣∣∣
1
r
− 1

∣∣∣∣ LqM

≤ M −∆.

This completes the proof. ¥

4 Stability

In this section we present our main result, Theorem
1, that shows that if the channel is perfect (Assump-
tion 2 holds), the coder and decoder are initialized at
the same synchronized stage (Assumption 3 holds), the
coder/decoder evaluators for Ωc

k/Ωd
k are reliable and the

bound on the mismatch between the initial conditions
at the coder and decoder holds, then it is possible to
design the quantizer, coder/decoder and controller such
that the closed-loop system (2) - (7) is stable.

Definition 3 The system (2) is Globally Exponentially
Stable 2 (GES) in x if for a fixed µc

0 > 0, µd
0 > 0 with

µc
0/µd

0 = r there exists ϕ : R≥0 → R≥0 ∈ K∞ such that
for all x0 ∈ R and we have:

|xk| ≤ ϕ(|x0|) ∀k ≥ 0 (23)

and |xk| → 0 as k →∞ exponentially fast.

Remark 5 Note that ϕ(|x0|) depends on µc
0 and µd

0.

Definition 4 The system xk+1 = Axk +Dwk, x0 ∈ Rn,
where x ∈ Rn, w ∈ Rl are respectively the state and the
disturbance, is said to be Input-to-State Stable (ISS) with
a linear gain γ̃ > 0 if for every initial condition x0 ∈ R
and every bounded disturbance w there exist positive K̂, λ̂
such that we have:

|xk| ≤ K̂ exp(−λ̂(k − k0))|x0|+ γ̃‖w‖ ∀k > k0.

The main contribution of our work is the following the-
orem, which shows that the system (2) with (3) - (7) is
GES in the sense of our non-standard Definition 3 if the
mismatch between µc

0 and µd
0 is sufficiently small.

Theorem 1 Consider the system (2) with (3) - (7),
when µc

0/µd
0 = r > 0. Let q be a quantizer fulfilling As-

sumption 1. Suppose Assumptions 2 - 4 hold and for a
given sampling period T > 0 the pair (Φ, Γ) is stabiliz-
able. Let

(i) K be such that Φ + ΓK is Schur,

(ii) Ωin ∈ (0, 1) be such that 1
Ωin

(Φ + ΓK) is Schur,

2 Note that this is not widely used standard definition. Here
we talk only about the stability of the state x of the plant,
not µ. Also an overshoot may depend on the initial condition.
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(iii) Ωout be such that Ωout > ‖Φ‖,

(iv)
∣∣∣µd

0−µc
0

µc
0

∣∣∣ < 1
γLq

, where Lq comes from Assumption 1
and γ is defined in (15),

(v) M and ∆ in Assumption 1 be such that M >
(2+K1+γ)∆

1−γ| 1r−1|Lq
, where K1, γ are defined in (15),

(vi) lout = M −∆,

(vii) lin = ∆M −∆, where ∆M comes from Corollary 2.

Then, the system (2) is GES in x.

The proof of Theorem 1 is given in the appendix. The
proof is a direct consequence of the fact that the system
during Mode 2 behaves as a cascade of ISS x−subsystem
and GES µc−, µd− subsystems.

Remark 6 The first item of Theorem 1 requires, that the
system is stabilizable with a certainty-equivalence con-
troller; the second is a condition on how slow the µc, µd-
subsystems have to be during the zoom-in stage; the third
is a condition on how fast the µc, µd-subsystems have to
be during the zoom-out stage; the forth is the bound on
the mismatch between the initial conditions at the coder
and decoder; the fifth is a condition on the data-rate of
the channel; the sixth and seventh are the conditions on
the switching parameters.

Remark 7 The fifth item of Theorem 1 (which is the
condition (17) from Section 3) means that the range of
the quantizer M has to be large enough compared to the
quantization error ∆ (i.e. the quantizer takes sufficiently
many levels). Note that when the initial conditions at
the coder and at the decoder are the same (µc

0 = µd
0, i.e.

r = 1), the condition on the data rate

M > (2 + K1 + γ)∆ (24)

for the system (12) with ν̄k = νc
k (which is the condition

used in [8]) can be recovered from (17). On the other hand,
since (24) is a strict inequality, whenever it holds, there
exists r sufficiently close to one, such that the forth and
the fifth items of Theorem 1 hold (conditions (16) and
(17) from Section 3). Hence, this implies that the scheme,
proposed in [8] has some intrinsic robustness properties
with respect to the mismatch between the initialization at
the coder and decoder.

Remark 8 Note that the forth condition of Theorem 1
shows a relationship between a ratio (mismatch) of the
initial conditions at the coder and at the decoder r, the ro-
bustness measure (gain) γ of the plant and the quantizer
characteristics Lq. It shows that for a fixed Lq, when the
gain is large, the smaller mismatch can be tolerated. Also

when the gain is small, the large mismatch can be toler-
ated. Note that without loss of generality we can assume
that Lq = 1, since many quantizers satisfy this property.

5 Conclusions

This paper is the first investigation of the problem of
robustness of linear control systems with quantized con-
trol with respect to the computational errors at the
coder and decoder. In this paper we analyze the stabil-
ity of the quantized control systems when the data is
transmitted via a perfect channel and the coder and de-
coder are initialized at different initial conditions. Us-
ing a trajectory-based scheme proposed in [8], under the
assumption that the channel is perfect, we derived the
bound on the mismatch between the initial conditions
at the coder and decoder that can be tolerated in order
to achieve GES. We believe that similar results can be
proven for other quantized control schemes published in
the literature. An interesting future research topic will
be to analyze the robustness properties with respect to
the initial coder/decoder mismatch of the nonlinear sys-
tems and systems with input disturbances.

Appendix

The Proof of Theorem 1 consists of Lemmas 1 and 2.
These lemmas capture the dynamics of the system dur-
ing two modes considered in the end of Section 3. The
first lemma considers the plant dynamics during Mode
1. It claims that if the initial conditions are such that
the zoom-out is triggered initially at both the coder and
decoder, then both of them will switch to the zoom-in
stage in the same finite time.

Lemma 1 Consider the system (2) with (3) - (7). Sup-
pose all conditions of Theorem 1 hold. Suppose the initial
conditions are such that the zoom-out stage is triggered
at both the coder and decoder (Mode 1). Then there ex-
ists k1 > 0 such that

Ωc
k1

= Ωd
k1

= Ωin.

Moreover,

k1 ≤
⌊

1
ln(Ωout/‖Φ‖) ln

( |ξc
0|

lin −∆

)⌋
.

Proof of Lemma 1. Suppose that the initial conditions
are such that the zoom-out stage is triggered at both the
coder and decoder. The system dynamics for ξc

k during
this mode (during Mode 1) satisfies the following for all
k ∈ [0, k1 − 1]:

|ξc
k+1| ≤

1
Ωout

‖Φ‖|ξc
k| = λ|ξc

k|,
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where λ = ‖Φ‖/Ωout < 1 since Ωout > ‖Φ‖ by design.
We have that ξc

k is decreasing as k →∞ and there exists
a time k1 > 0 such that we have:

|ξc
k1
| ≤ λk1 |ξc

0| < lin −∆.

Hence the zoom-in stage is triggered at the coder and
decoder at the time k1, since |ξc

k1
| < lin − ∆ implies

that
∣∣µc

k1
q(ξc

k1
)
∣∣ < linµc

k1
and

∣∣µd
k1

q(ξc
k1

)
∣∣ < linµd

k1
(see

Remark 2). Also for a given λ < 1 there exists a =
ln(1/λ) such that

λk1 = (exp(−a))k1 = exp(−ak1).

Then we can write:

k1 ≤
⌊
− 1

a ln
(

lin−∆
|ξc

0|
)⌋

=
⌊

1
ln(Ωout/‖Φ‖) ln

(
|ξc

0|
lin−∆

)⌋
.

From the above we can conclude the following: if
µc

0/µd
0 = r > 0 then there exists a time k1 such that

the zoom-in stage is triggered at both the coder and
decoder at the same time k1. Therefore, the plant will
be in Mode 2. ¥

The next lemma considers the plant dynamics during
Mode 2. It claims that if the zoom-in stage is triggered
at both the coder and decoder, then the coder and de-
coder will always stay in the zoom-in stage.

Lemma 2 Consider the system (2) with (3) - (7). Sup-
pose all conditions of Theorem 1 hold. Then

Ωc
k = Ωd

k = Ωin

for all k ≥ k1, where k1 comes from Lemma 1.

Proof of Lemma 2. Suppose the zoom-in stage is trig-
gered at both the coder and decoder. The proof will be
carried out by contradiction. Suppose there exists a time
k2 > k1 such that |q(ξk2)| > lout. That is: k2 is the min-
imum time when the coder and decoder switch from the
zoom-in stage to the zoom-out stage. Note that this im-
plies that |ξk2 | > lout + ∆ (see Remark 2).

By Corollary 2 the ξc
k dynamics satisfies (22) during

Mode 2 and we have that the following holds for all
k ∈ [k1, k2]:

|ξk| ≤ K1∆M + γ∆ + γ

∣∣∣∣
1
r
− 1

∣∣∣∣ LqM ≤ M = lout + ∆.

We have that ∀k ∈ [k1, k2] |ξk| ≤ lout + ∆, which con-
tradicts to our assumption that |ξk2 | > lout + ∆. Hence,
there does not exist a time k2 such that |q(ξk2)| > lout

(see Remark 2) and the zoom-out stage is triggered at
the coder and decoder. We can conclude that once the
coder and decoder switch to the zoom-in stage, if all con-
ditions of Theorem 1 hold, then the coder and decoder
will be zooming-in for all future time. ¥

The proof of Theorem 1 below is a direct consequence
of the fact that the system during Mode 2 behaves as a
cascade of ISS x−subsystem and GES µc−, µd− subsys-
tems.

Proof of Theorem 1. Suppose the zoom-in stage is
triggered initially. By Lemma 2, the coder and decoder
will be in the zoom-in stage for all future time k ≥ k1.
Adding and subtracting some terms to (10), we can say
that during Mode 2 the x−dynamics of the plant evolve
according to the following for all k ≥ k1:

xk+1 = (Φ+ΓK)xk+ΓKµd
k

(
q

(
xk

µc
k

)
− xk

µc
k

+
xk

µc
k

− xk

µd
k

)

Note, that µd
k < µd

k1
∀k > k1 since µd

k is decreasing
during the zoom-in stage. Also µd

k1
= Ωk1

outµ
d
0, where

k1 ≤
⌊

1
ln(Ωout/‖Φ‖) ln

(
|ξc

0|
lin−∆

)⌋
.

Also since Ωc
k = Ωd

k for all k ≥ 0, we have that µc
0

µd
0

=
µc

k

µd
k

= r, therefore we can write that xk

µd
k

= xk

µc
k
r. We have

the following during Mode 2:

xk+1 = (Φ+ΓK)xk+ΓKΩk1
outµ

d
0

(
q
(

xk

µc
k

)
− xk

µc
k

+ xk

µc
k
− xk

µc
k
r
)

= (Φ+ΓK)xk+ΓKΩk1
outµ

d
0

(
q

(
xk

µc
k

)
− xk

µc
k

+ (1− r)
xk

µc
k

)
.

(25)
During Mode 2 (during the zoom-in stage) | xk

µc
k
| ≤ lout +

∆ = M , therefore we can use the second condition of
Assumption 1 to conclude that |νk| = |q

(
xk

µc
k

)
− xk

µc
k
| ≤ ∆

and that |1 − r|| xk

µc
k
| ≤ |1 − r|M . Therefore, (25) is a

sum of a stable first term (since Φ + ΓK is Schur) and
a bounded second term. Therefore, we can write for all
k ≥ k1:

|xk| ≤ K̄ exp(−λ̄(k − k1))|xk1 |+ γ̄(‖ν‖+ |1− r|‖ξc‖).

In particular, let κ̄ > 0 and σ̄ ∈ (0, 1) be such that
‖(Φ + ΓK)k‖ ≤ κ̄σ̄k for all k ≥ 0. Then let

K̄ = κ̄, λ̄ = − ln(σ̄), γ̄ =
κ̄‖ΓK‖Ωk1

outµ
d
0

1− σ̄
,

where k1 in the formulae for γ̄ is a function of x0 and µc
0.

Therefore, the gain γ̄ depends on x0, µc
0, µd

0. We can say
that the x-dynamics is ISS when νk, ξc

k are considered
as inputs. Combining this fact and the fact that µc, µd

dynamics are GES, we have a cascade of ISS x-subsystem
and GES µc−, µd− subsystems. Hence, there exist K̃, λ̃
such that for all k ≥ 0 we have:

|(xk, µc
k, µd

k)| ≤ K̃ exp(−λ̃k)|(x0, µ
c
0, µ

d
0)|.
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On the other hand, if the zoom-out stage is triggered
initially, then by Lemma 1 for any x0, µ

c
0, µ

d
0 there exists

a k1 := k1(|x0|, µc
0), such that |xk1

µc
k1

| < lin−∆ and hence

the zoom-in condition is triggered. Hence, for all k ≥
k1 + 1 we have

|(xk, µc
k, µd

k)| ≤ K̃ exp(−λ̃(k − k1))|(xk1 , µ
c
k1

, µd
k1

)|.
(26)

Moreover, for all k ∈ [0, k1] we have

|xk| ≤ |Φ|k1(|x0|,µc
0)|x0| := γ1(|x0|, µc

0) (27)

|µc
k| ≤ |Ωout|k1(|x0|,µc

0)|µc
0| ≤ γc(|x0|, µc

0) (28)

|µd
k| ≤ |Ωout|k1(|x0|,µc

0)|µd
0| ≤ γd(|x0|, µc

0, µ
d
0). (29)

Combining bounds (26)-(29), we can write for all k ≥ 0:

|xk| ≤ exp(−λ̃k)K̃ exp(λ̃k1(|x0|, µc
0))·

√
γ2
1(|x0|, µc

0) + γ2
c (|x0|, µc

0) + γ2
d(|x0|, µc

0, µ
d
0),

which shows that xk converges to zero exponentially.
The proof would be complete if we had

K̃ exp(λ̃k1(0, µc
0))·

√
γ2
1(|x0|, µc

0) + γ2
c (|x0|, µc

0) + γ2
d(|x0|, µc

0, µ
d
0) = 0

but this is not true since γc(0, µc
0) 6= 0 and γd(0, µc

0, µ
d
0) 6=

0 for any µc > 0, µd > 0. In order to prove stability, we
use Assumption 1 to prove that there exists a continuous
and bounded ϕ : R≥0×R≥0 → R≥0 with ϕ(0, µc, µd) = 0
so that (23) holds. With these properties, there is no loss
of generality in taking ϕ(·, µc, µd) ∈ K∞ for any fixed
µc, µd > 0 (just bound the original function with the
K∞ one). Let an arbitrary ρ > 0 be given and introduce

T k1 := max
{⌈

ln
(

ρ|xk1 |
M

)
(ln(Ωin))−1

⌉
, 0

}
.

Then we have for all k ≥ k1 + T k1 that

|xk| ≤ Mµc
k = MΩk−k1

in µc
k1
≤ MΩT k1

in µc
k1
≤ ρµc

k1
|xk1 |

=: χc(|xk1 |, µc
k1

)
and

|xk| ≤ Mµd
k = MΩk−k1

in µd
k1
≤ MΩT k1

in µd
k1
≤ ρµd

k1
|xk1 |

=: χd(|xk1 |, µd
k1

).
Due to the fact, that Assumption 1 guarantees that there
exists an Lq > 0 such that |q(z)| ≤ Lq|z| for all z, for
k ∈ [k1, k1 + T k1 ] we can write:

|xk| ≤ (‖Φ‖+ ‖ΓK‖Lq)T k1 |xk1 | =: χ(|xk1 |).

Since ‖Φ‖ > 1 and Ωin < 1, χ(0) = 0 and χ(s) is
bounded for all s ≥ 0. Hence, we can bound it by χ1 ∈
K∞. Finally, we define

ϕ̃(|x|, µc, µd) := max{χ1(|x|), χc(|x|, µc), χd(|x|, µd)}.

We have that ϕ̃(0, µc, µd) = 0 and is increasing in all
arguments. Hence, we can write that for all k ≥ k1:

|xk| ≤ ϕ̃(|xk1 |, µc
k1

, µd
k1

) ≤ ϕ̃(γ1, γc, γd) =: ϕ̄(|x0|, µc
0, µ

d
0).

Note that ϕ̄(0, µc
0, µ

d
0) = 0 for any µc, µd > 0. Finally,

the conclusion (23) follows by noting that there exist a
ϕ with the right properties such that

ϕ(s, µc, µd) ≥

max{ϕ̄(s, µc, µd), γ1(s, µc), γc(s, µc), γd(s, µc, µd)}
for all s, µc, µd. ¥
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